###
TXRCFP: Texas Response to Curriculum Focal Points for K-8 Mathematics Revised 2013

The Texas Response to Curriculum Focal Points Revised 2013 was created from the 2012 revision of the TEKS as a guide for implementation of effective mathematics instruction by identifying critical areas of content at each grade level.

###
Vertical Alignment Charts for Revised Mathematics TEKS

This resource provides vertical alignment charts for the revised mathematics TEKS.

###
Kid2Kid: Determining the Meaning of Slope and Intercepts

Kid2Kid videos on determining the meaning of slope and intercepts in English and Spanish

###
Using Logical Reasoning to Prove Conjectures about Circles

Given conjectures about circles, the student will use deductive reasoning and counterexamples to prove or disprove the conjectures.

###
Creating Nets for Three-Dimensional Figures

Given nets for three-dimensional figures, the student will apply the formulas for the total and lateral surface area of three-dimensional figures to solve problems using appropriate units of measure.

###
Generalizing Geometric Properties of Ratios in Similar Figures

Students will investigate patterns to make conjectures about geometric relationships and apply the definition of similarity, in terms of a dilation, to identify similar figures and their proportional sides and congruent corresponding angles.

###
Determining Area: Sectors of Circles

Students will use proportional reasoning to develop formulas to determine the area of sectors of circles. Students will then solve problems involving the area of sectors of circles.

###
Converting Between Measurement Systems

Given a real-world situation with measurements in either metric/SI or customary units, the student will solve a problem requiring them to convert from one system to the other.

###
Interactive Math Glossary

###
Making Conjectures About Circles and Segments

Given examples of circles and the lines that intersect them, the student will use explorations and concrete models to formulate and test conjectures about the properties and relationships among the resulting segments.

###
Determining Area: Regular Polygons and Circles

The student will apply the formula for the area of regular polygons to solve problems.

###
Making Conjectures About Circles and Angles

Given examples of circles and the lines that intersect them, the student will use explorations and concrete models to formulate and test conjectures about the properties of and relationships among the resulting angles.

###
Domain and Range: Numerical Representations

Given a function in the form of a table, mapping diagram, and/or set of ordered pairs, the student will identify the domain and range using set notation, interval notation, or a verbal description as appropriate.

###
Solving Problems With Similar Figures

Given problem situations involving similar figures, the student will use ratios to solve the problems.

###
Transformations of Square Root and Rational Functions

Given a square root function or a rational function, the student will determine the effect on the graph when f(x) is replaced by af(x), f(x) + d, f(bx), and f(x - c) for specific positive and negative values.

###
Transformations of Exponential and Logarithmic Functions

Given an exponential or logarithmic function, the student will describe the effects of parameter changes.

###
Solving Square Root Equations Using Tables and Graphs

Given a square root equation, the student will solve the equation using tables or graphs - connecting the two methods of solution.

###
Functions and their Inverses

Given a functional relationship in a variety of representations (table, graph, mapping diagram, equation, or verbal form), the student will determine the inverse of the function.

###
Rational Functions: Predicting the Effects of Parameter Changes

Given parameter changes for rational functions, students will be able to predict the resulting changes on important attributes of the function, including domain and range and asymptotic behavior.

###
Evaluating Methods of Sampling from a Set of Data

Given a problem situation, the student will evaluate a method of sampling to determine the validity of an inference made from the set of data.